
	Skip to content		
			
				
					
				
		
						
				
									
			
		

						
					Menu				
					Start
	Overview

	News
	2024
	2023
	2022
	2021
	2020
	2019
	NEWS Overview …
	What’s new in WPTools 9.3
	2018
	2017
	2016
	2015
	2014
	2013
	2012
	2011
	2010
	2009
	2008
	2007
	2006
	2005
	2004
	2003
	2002
	2001

	Products
	Product Overview…
	WPTools – word processing VCL
		WPTools overview
	WPTools Features
	TextProducer – dynamic table in WPTools
	WPReporter – Reporting for WPTools
	WPSpell – Spellcheck for WPTools
	WPTools file format / DocX

	WPViewPDF – PDF view
		WPViewPDF PLUS – PDF merge, split
	WPViewPDF Make-Image – (use with ImageEn)
	.NET PDF view example
	Convert PDF into watermark for other PDF files
	WPViewPDF as PDF manipulation object

	TextDynamic7 .NET, TextDynamic7 .DLL / OCX
	wPDF – universal PDF creator VCL
	wPDFControl
	wRTF2PDF / TextDynamic Server: RTF / PDF creation for .NET and as DLL

	Support
	Forum
	WPTools 9 Manual
	WPTools API Index
	WPViewPDF 5
	TextDynamic / RTF2PDF Online Manual

	Download
	Download Overview
	WPTools 9.3 word processing sample (new)
	WPViewPDF Demo (VCL, .NET, OCX)
	WPTools 9 trial editions (VCL)
	wPDF trial edition (VCL)
	TextDynamic V7 trial (.NET, OCX)
	RTF2PDF / wPDFControl Demo (ASP, .NET, OCX)
	Customers: Download site for Licenses

	Buy
	License Agreement
	Buy: WPTools, wPDF, WPViewPDF VCL Components
	Buy: wPDFControl, WPViewPDF, TextDynamic (Server)
	Buy: Component Updates

	Contact
	Contact Information
	Impressum
	License Agreement
	Partners and Links

	Privacy Statement
	Datenschutzerklärung

	

			

		
				
			
				
					
						
					
				
			

		
		
	
				
			
	
		
			

	
		
			
				.NET PDF view example
			

			
		
			You need a PDF Viewer for your DotNET application?

WPViewPDF can be easily integrated into .NET application for Windows. This is a screenshot of our sample application which main form which has just about 335 lines of code – most of it displayed on this page. But this does not mean you cannot change anything. To the contrary, since the GUI is created in generic code, you can with just a few changes update the entire look and the user experience.

This is a screenshot of the demo:

The initialization of the form is done here

 public Form1()
 {
 InitializeComponent();

 // Set some properties
 pdfViewer1.ViewerStart("xxx", "yyy", 0);

 pdfViewer1.ViewOptions = eViewOptions.wpExpandAllBookmarks |
 eViewOptions.wpExpandAllBookmarks |
 eViewOptions.wpSelectPage |
 eViewOptions.wpShowPageSelection;

 pdfViewer1.ViewControls =
 eViewControls.wpHorzScrollBar |
 eViewControls.wpNavigationPanel |
 eViewControls.wpPropertyPanel |
 eViewControls.wpVertScrollBar |
 eViewControls.wpViewPanel;

 pdfViewer1.AllowMovePages = true;

 // Make sure the annotations work interactively!
 pdfViewer1.Command(commands.COMPDF_ACRO_MAKEDRAWOBJ, "", 8192);

 // enlarge the zoom buttons
 pdfViewer1.Command(commands.COMPDF_SETBUTTONHEIGHT, 32);

 // Standard Action Mode 'Click + Pan'
 pdfViewer1.Command(commands.COMPDF_SetActionMode,"",1);

 // ENABLE saving of annotations
 pdfViewer1.Command(commands.COMPDF_Ann_SetAnnotSaveMode, 1);

 // Load the menu from the embedded actions
 pdfViewer1.InitMainMenu(menuStrip1, doExecuteWPViewAction, fileToolStripMenuItem, infoToolStripMenuItem);

 // Initialize the toolbar
 InitToolbar(toolStrip1, _ActionButtons);

 }

The code calls a function to initialize the toolbar – InitToolbar.

It uses a string array to list all action names which should be used. The names are also used to load the PNG images from the resources to be displayed on the buttons.

 private string[] _ActionButtons = new string[23] {
 "FileOpen", "FileAppend", "FileSaveAsPDF", "SelectStd", "SelectObjects",
 "ZoomToRect", "SelectText", "SelectFillForm", "DrawFieldEdit", "DrawFieldCheck",
 "DrawAnnotFrame", "DrawAnnotHighlight", "DrawAnnotFreetext", "DrawAnnotSymbol", "DrawAnnotSquiggly",
 "DrawAnnotHighlightText", "DrawAnnotBlackText", "DrawTextline", "DrawRect", "DrawImage",
 "DrawHighlight", "DrawCircle", "About" };

 private void InitToolbar(ToolStrip toolStrip, string[] Actions)
 {
 toolStrip.Height = 40;
 bool highdpi;

 // Enable the large buttons if >120dpi!
 Graphics g = Graphics.FromHwnd(new IntPtr(0));
 highdpi = (g.DpiX>120);

 // Create the toolbar
 for (int i = 0; i < Actions.Length; i++)
 {
 string pngname =
 "PDFViewNET.Resources." + Actions[i] + ((highdpi) ? "@2x.png" : ".png");

 System.Reflection.Assembly thisExe;

 // use this to check resource names in debugger!
 // string[] db = GetType().Assembly.GetManifestResourceNames();

 thisExe = System.Reflection.Assembly.GetExecutingAssembly();
 System.IO.Stream imagestream = thisExe.GetManifestResourceStream(pngname);
 // If you get an exception here
 // a) check name of resource
 // b) check if resource Buildmoude was set to "Embedded"

 Image img = Image.FromStream(imagestream);

 // Create a new button
 ToolStripButton ActionBtn = new ToolStripButton("", img, null, "");
 ActionBtn.ImageScaling = ToolStripItemImageScaling.None;

 // and get the correct id
 ActionBtn.Tag = pdfViewer1.CommandStr(commands.COMPDF_ACTION_READ, "?" + Actions[i]);
 ActionBtn.Click += new System.EventHandler(doExecuteWPViewAction);

 toolStrip.Items.Add(ActionBtn);
 }
 }

To update the button state a generic method can be used. It simply enumerates all buttons, reads the action id which has been stored in “Tag” and ask the WPViewPDF engine about the current state of this action.

 // This method is used to update the Enabled state of the menu and toolitems
 private void UpdateGUI()
 {
 for (int i = 0; i < toolStrip1.Items.Count; i++)
 if (toolStrip1.Items[i] is ToolStripButton)
 {
 ToolStripButton btn = toolStrip1.Items[i] as ToolStripButton;
 int ac = (int)btn.Tag;
 if (ac > 0)
 {
 int state = pdfViewer1.Command(commands.COMPDF_ACTION_READSTATE, ac);
 // 1=Checked, 2=Disabled
 btn.Enabled = (state & 2)==0 ;
 btn.CheckState = ((state & 1) == 1) ? CheckState.Checked : CheckState.Unchecked;
 }

 }
 }

This method is executed by an event of WPViewPDF – it can be used to update the GUI.

private void pdfViewer1_OnViewerMessage(object Sender, ref int ID, int param)
 {
 switch (ID)
 {
 case commands.MSGPDF_NEEDPASSWORD:
 {
 break;
 }

 case commands.MSGPDF_CHANGESELPAGE: // Moved to different page (=wparam)
 {
 break;
 }

 case commands.MSGPDF_CHANGEVIEWPAGE: // Moved to different page (=wparam)
 // MSGPDF_CHANGEVIEWPAGE is also triggered if the action mode was changed. This makes MSGPDF_CHANGEVIEWPAGE
 // to update GUI elements, such a buttons
 {
 UpdateGUI();
 break;
 }

 case commands.MSGPDF_CHANGEANNOT: // WPViewPDF 4 only: The annot have been moved, created or deleted.
 {
 break;
 }

 case commands.MSGPDF_CHANGESELOBJECT: // A Draw object has been selected or deselected
 {
 break;
 }
 }
 }

This is the most important function. It is executed by any click on the toolbar on the menu. You can copy&paste it to your application and use it with only few changes since it uses flags to determine, i.e if an open file or a save dialog has to be displayed. Also here, the action id is read from the “Tag” of the sender control.

private void doExecuteWPViewAction(object sender, EventArgs e)
 {
 int param, paramkind, res;
 string actionname, actionparam;
 int ac = 0;

 if (sender is System.Windows.Forms.ToolStripMenuItem)
 ac = (int)(sender as System.Windows.Forms.ToolStripMenuItem).Tag;
 else if (sender is System.Windows.Forms.ToolStripButton)
 ac = (int)(sender as System.Windows.Forms.ToolStripButton).Tag;

 param = pdfViewer1.Command(commands.COMPDF_ACTION_READ, "param", ac);
 paramkind = pdfViewer1.Command(commands.COMPDF_ACTION_READ, "paramkind", ac);
 actionname= pdfViewer1.CommandGetStr(commands.COMPDF_ACTION_READ, "name", ac);
 actionparam="";

 if (paramkind==50)
 {
 string s = pdfViewer1.CommandGetStr(commands.COMPDF_ACTION_READ, "hint", ac)+"?";
 if(MessageBox.Show(s,"",MessageBoxButtons.OKCancel)==DialogResult.Cancel) return;
 }

 // Bit 2 is set, we need a string parameter!
 if ((param & 2) == 2)
 {
 /* // 0: Pagenr as Int or string
 // 1: Fontname as string
 // 2: Color as Int or string
 // 3: PDF filename as string OPEN
 // 4: PDF filename as string SAVE
 // 5: text filename as string OPEN
 // 6: text filename as string SAVE
 // 7: image file name as string OPEN
 // 8: JPEG file name as string SAVE
 // 9: type @ options_comma_list
 // 10: options_comma_list
 // 11: options_for_DrawObjects
 // 12: Zoom Value as Int
 // 13: JPEG image file name as string to OPEN passed as "file=...",... + other params
 // 14: some text as string passed as "contents=...",... + other params
 // 15: some multiline text as string passed as "contents=...",... + other params
 // 16: Boolean on/off 1/0

 // 50: Ask $hint$ yes/now
 */

 if ((paramkind == 3) || (paramkind == 5) || (paramkind == 6) || (paramkind == 13))
 {
 if (paramkind==3) openFileDialog1.Filter = "PDF Files (*.PDF)|*.PDF";
 else if (paramkind==5) openFileDialog1.Filter = "Text Files (*.TXT)|*.TXT,*.*";
 else if ((paramkind==3) || (paramkind==13)) openFileDialog1.Filter = "Image Files (*.JPG)|*.JPG;*.JPEG";

 if (openFileDialog1.ShowDialog()==DialogResult.Cancel) return;
 else actionparam = openFileDialog1.FileName;

 // This parameter is used for JPEG Draw Objects
 if (paramkind==13)
 actionparam = "\"file=" + actionparam + "\""; // + Color params color= background-color

 }
 else if ((paramkind == 4) || (paramkind == 6) || (paramkind == 8))
 {
 if (paramkind == 4) saveFileDialog1.Filter = "PDF Files (*.PDF)|*.PDF";
 else if (paramkind == 6) saveFileDialog1.Filter = "Text Files (*.TXT)|*.TXT,*.*";
 else if ((paramkind == 8) || (paramkind==13)) saveFileDialog1.Filter = "Image Files (*.JPG)|*.JPG;*.JPEG";
 if (saveFileDialog1.ShowDialog() == DialogResult.Cancel) return;
 else actionparam = saveFileDialog1.FileName;
 }
 else if ((paramkind == 14)||(paramkind == 0)) // A string
 {
 InputForm dlg = new InputForm();
 dlg.label1.Text = pdfViewer1.CommandGetStr(commands.COMPDF_ACTION_READ, "hint", ac);
 if (dlg.ShowDialog(this)==DialogResult.Cancel) return;

 actionparam = (paramkind == 0) ? dlg.textBox1.Text :
 "\"contents=" + dlg.textBox1.Text + "\"";
 dlg.Dispose();
 }
 else if (paramkind == 15) // A multiline string
 {
 InputForm dlg = new InputForm();
 dlg.label1.Text = pdfViewer1.CommandGetStr(commands.COMPDF_ACTION_READ, "hint", ac);
 dlg.textBox1.Multiline = true;
 dlg.Height = dlg.Height * 2;
 if (dlg.ShowDialog(this) == DialogResult.Cancel) return;
 actionparam = "\"contents=" + dlg.textBox1.Text + "\"";
 dlg.Dispose();
 }

 }

 pdfViewer1.CommandStrEx(commands.COMPDF_ACTIONNR, actionparam, ac);
 }

		

			

		
	

	
	
					

WPTools 9.3

- VCL word processing

- RTF, mailmerge and reporting

- WYSIWYG

- HTML and CSS

- optional spellcheck

- SVG support

- scaling toolbar and ruler

- optional DocX load&save

wPDF 5

- PDF creation VCL

- PDF export for WPTools

- PDF export for ReportBuilder

- PDF Export for FastReport

- EMF to PDF conversion

TextDynamic7

- .NET WYSIWYG word processing

- Reporting

- HTML & Emails

- RTF to TIFF conversion

- optional DocX support

WPViewPDF 5

- View PDFs

- Print PDFs

- Annotate PDFs (Text, Highlight)

WPViewPDF 5 PLUS

- Merge PDF

- Stamp PDF

- Delete Pages

- Reorder Pages

- Process PDF forms

- Add popup annotations

- Work with PDF forms

- Create PDF forms

RTF2PDF / TD Server 5

- RTF to PDF conversion

- DocX to PDF conversion

- Document Creation

- Document Conversion

wPDFControl .NET / DLL 5

- EMF to PDF conversion

- Device (HDC)

			

	

			
			
								
					© 2024 WPCubed • Built with GeneratePress				

			

		
		

We use technical cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use the cookies.
SettingsAccept

Privacy & Cookies Policy

	
		
			
			Close
		
		
			
	
		
			
				Privacy Overview
				
					This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.

				

							

		

		
												
						
							
								Necessary							
															
									
									Necessary
								

								Always Enabled
													

						
							
								
									Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.								

							

						

					

																	
						
							
								Non-necessary							
															
									
									Non-necessary
								

													

						
							
								
									 Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.								

							

						

					

																	
						
							
								Functional							
															
									
									Functional
								

													

						
							
								
									Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
								

							

						

					

																	
						
							
								Performance							
															
									
									Performance
								

													

						
							
								
									Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
								

							

						

					

																	
						
							
								Analytics							
															
									
									Analytics
								

													

						
							
								
									Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
								

							

						

					

																	
						
							
								Advertisement							
															
									
									Advertisement
								

													

						
							
								
									Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
								

							

						

					

																	
						
							
								Others							
															
									
									Others
								

													

						
							
								
									Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
								

							

						

					

										

	

		

		
			
				
					
						
						
															SAVE & ACCEPT
													

						
					

				

			

		

	

